**The Most Abstract/**

*Gene***ric**

*Rules of Order*/*Rules of Organization*Shared by__Dialectical__*Progressions*in

*Gene***ral, per**

**F**.

**.**

__E__**.**

__D__Dear Readers,

The most abstract/

-- are characterized by what

The most abstract/

**ric,***gene***principles of organization, per***universal***F**.**.**__E__**.'s**__D__*"*are the following --__Dialectical__**Theory of Everything**",__0. Precursor to/____"__. Per the first-order "Peano Postulates", the first four of the modern axioms for the "**Pre-Vestige**"**of**:*Dialectical*Order/Ordinality**[***Quanto*-]Peanic Succession**N**atural" arithmetic of the "**N**atural" Numbers --

**N**__=__**{ 1**,**2**,**3**,**4**, . . .**}**-- are characterized by what

**F**.**.**__E__**. terms "Peanic Succession", "Peanic Ordinality", or just**__D__"[

1..--->..s(1)..--->..s(2)...--->..s(3)..---> . . .

First order "Peano Axioms" of "Peanic ordinality" [original version] --

-- is characterized by what

Examples --

-- wherein "

**]Peanicity", based upon the**__quant__itative**s**uccession-function,**s**, such that --**s(n)****=****n****+****1**--**1****..****--->****.........****2****.....****--->****........****3****......****--->****.........****4****....****--->****. . .**1..--->..s(1)..--->..s(2)...--->..s(3)..---> . . .

First order "Peano Axioms" of "Peanic ordinality" [original version] --

**P1**.**1**is a "Natural" Number.**P****2**. The successor of any "Natural" Number is also a "Natural" Number.**P****3**. No two "Natural" Numbers have the same successor.**P****4**.**1**is not the successor of any "Natural" Number.**1**. "__Qualo____-__**". Per**__Peanic Succession__**F**.**.**__E__**.'s first-order axioms for their**__D__*"*, the arithmetic of the**First**__Dialectical__**Arithmetic**"*"*--**Natural Dialectors**"

NN

__Q____=__**{**,__q__/1**,**__q__/2**,**__q__/3**, . . .**__q__/4**}**-- is characterized by what

**F**.**.**__E__**. terms**__D__*"*,**-**__Qualo__**Peanic Succession**"*"*, or just**-**__Qualo__**Peanic Ordinality**"*"*, based upon the**-**__Qualo__**Peanicity**"*ontological categories*__q__*ual**ifiers***uccession-function,**__s__**, such that --**__s__

__s__**[**__q__/n ]**=**__q__**/( s(n) )****=**__q__**/( n****+****1 )**--__q__**/****1****..****--->****..........**__q__**/****2****....****--->****.........**__q__**/****3****.....****--->****.........**__q__**/****4****.....****---> . . .**__q__/1..--->....__s__(__q__/1)..--->...__s__(__q__/2)..--->...__s__(__q__/3)..---> . . .Examples --

**a**. Marx's__Dialectical__**of his theory of the human-societal [sub-]totality known as "capitalism" --***Presentation*

__C____ommodities__**--->**__M____onies__**--->**__M____M____C____C__**--->**__K____apitals__**--->****. . .**-- wherein "

__M____M____C__**" stands for the**__C__*"*, or**"**__dialectical__synthesis*"*, of "**complex unity**"__M__**" and/with "**__onies____C__**", i.e., the "real subsumption" of "**__ommodities____C__**" by "**__ommodities____M__**", or the continuing "**__onies__**conversions**" of__C__**into**__ommodities____M__**, and vice versa --**__onies__**C**

**-- M -- C**'

**-- M**'

**-- C**''

**-- M**''

**. . .**

**--**connoted by --

__q__**/**

**M**

**C**, or "

__M__

__onies__

**Mediated**

__C__

__ommodities____".__

**Circulations****b**.

**F**.

**.**

__E__**.'s**

__D__*"*Equation

**"**__Dialectical__Theory of Everything

*Meta**-*of the

**Model****/ of the**

*Cosmos***of**

*universal process**"*

**Cosmo**-

*Genesis**"*/ of

*"*--

**The**"__Dialectic__of Nature

__sub____-__

**nuclear**__"__

**particles**"**--->**

__sub____-__

**atomic**"**particles**"**--->**

__sub____-__

**nuclears**-

__to____-__

__sub____-__

**atomics**-

__conversions__

**--->**

__atoms__**--->**

**. . .**

-- wherein "

__sub____-__

**nuclears**-

__to____-__

__sub____-__

**atomics**-**" connotes the**

__conversions__*"*, or

**"**__dialectical__synthesis*"*, of "

**complex unity**"

__sub____-__" and/with "

**atomic**"**particles**"

__sub____-__", i.e., the "real subsumption" of "

**nuclear**"**particles**"

__sub____-__" by "

**nuclear**"**particles**"

__sub____-__",

**atomic**"**particles**"

__q__**/**

**s**

**n**, or the

**of [more] "**

*reproductive accumulation*

__sub____-__" through the "ontological conversion" of some of the "

**atomic**"**particles**"

__sub____-__" into "

**nuclear**"**particles**"

__sub____-__".

**atomic**"**particles**"First order "Seldon Axioms" of

*"*[for the

**Qualo**-**Peanic ordinality**"**F**.

**.**

__E__**.**

__D__**N**

__Q__*"*] --

**First**__Dialectical__**Arithmetic**"**Q**

**1**.

__q__**/**

**1**is a "Natural Dialector".

**Q**

**2**. The successor of any "Natural Dialector" is also a "Natural Dialector".

**Q**

**3**. No two "Natural Dialectors" have the same successor.

**Q**

**4**.

__q__/1 is not the successor of any "Natural Dialector".

__2. Seldonian,__*Cumulative*__[__.

**]***Evolute***Successions***of Series*/*of Sums***,**

*Seldon Function*__Dyad__ic

__|-|-|__**k**

**=**

**[**--

__q__/1 ]^(2^k)**...............................................................**

**q/1 ---> q/1**

**+**

**q/2 ---> q/1**

**+**

**q/2**

**+**

**q/3**

**+**

**q/4 --->**. . .

count of

**ualifier terms:.**

__q__**.....2**

**^0**

**=**

**1**...................

**2**

**^1**

**=**

**2**.........................................

**2**

**^2**

**=**

**4**.......................

*Seldon Function,*__Triad__ic

__|-|-|__**k**

**=**

**[**--

__q__/1 ]^(3^k)**q/1**

**--->**

**q/1 +**

**q/2 +**

**q/3 ---> q/1+**

**q/2 +**

**q/3 +**

**q/4 +**

**q/5 +**

**q/6 +**

**q/7 +**

**q/8 +**

**q/9**

**--->**

**. . .**

count of

__q__ualifier terms:

**3**

**^0**

**=**

**1**..........

**3**

**^1**

**=**

**3**...........................................................................

**3**

**^2**

**=**

**9**..............................................

__3____.__

__F__

__.__*E*.*D*. Axiom

__Q__**.**

__9, the Double-<<__*Aufheben*>> Evolute Product RuleRules

**1**. and

**2**., given above, concern that aspect of the

**ric organization of**

*gene***that is**

__dialectical__categorial progressions**ternal to the <<**

__ex__**>> which constitute the <<**

*monads***>> of <<**

*arithmoi***>>, or**

*monads***of**

*assemblages***, that are the**

*units***, represented by the**

*ontological categories***ric categorial "**

*gene***ualifiers",**

__q__

__q__**/n**, that are the terms of the expressions above.

Rule

**3**. concerns that aspect of the

**ric organization of**

*gene***that is**

__dialectical__categorial progressions**ternal to each post-<<**

__in__**>> <<**

*arche'***>>.**

*monad*Still very abstract, in order to maintain its

**rality -- its applicability to**

*gene***such <<**

*all***>>, despite the vast diversity in detail and**

*monads***ficity of**

*speci*

__dialectical__**/ <<**

*category***>>**

*arithmos***, Rule**

*progressions***3**. nevertheless asserts something definite about the constitution of the <<

**>> of predecessor relative to those of successor "self-hybrid" <<**

*monads***>>: that**

*arithmoi**"*[

__self__*-*]

*meta**-*<<

**>>-**

*monad*

*ization**"*of the <<

**>> of the predecessor "self-hybrid" <<**

*monads***>> is the process of**

*arithmos***sis of the content of its successor "self-hybrid" <<**

*gene***>>.**

*arithmos***Q**

**9**.

__Axiom__**: For every**

__9__**j**and

**k**in

**N**, hence for every

__q__**/j**and

__q__**/k**in

**N**

**,**

__Q__

__q__**/j**x

__q__**/k**

**=**

__q__**/k**

**+**

__q__**/(j**

**+**

**k)**[for generic ontological-categorial

**ualifiers].**

__q__For "interpreted", or "assigned", ontological-categorial

**ualifiers, e.g., given "**

__q__**X**" as representing the first letter of the name of a specific

**, this rule becomes --**

__dialectical__ontological category**x**

__X__

__X__**=**

__X__**+**

__q__**/XX**

**=**

__q__**/X**x

__q__**/X**

**=**

__q__**/X**

**+**

__q__**/XX**

-- wherein

__q__**/XX**denotes an <<

**>> "meta-**

*arithmos***X**s, each <<

**>> being a**

*monad**"*<<

**-**__meta__**>>" of the**

*monad*

__q__**/X**<<

**>>, such that each <<**

*monads***>>" of the**

*monad*

__q__**/XX**<<

**>> is made up out of a [usually heterogeneous] multiplicity of <<**

*arithmos***>> of its predecessor self-hybrid,**

*monads*

__q__**/X**or "

**", <<**

__X__**>>.**

*arithmos*If "

-- wherein

**Y**" represents the first letter of the name of this*"***meta**-"*, then --***category****x**__X____X__**=**__X__**+**__delta__-__X__**=**__X__**+**__Y__-- wherein

__delta__-**connotes a purely-**__X__**itative,**__qual__**"***ontological category***incremental**" to the**connoted by***ontological category***, i.e., wherein**__X____delta__-**connotes**__X__**in terms of its**__Y__*"*ancestry, such that

**meta**-**genealogical**"**/<<**

*ontological category***>>**

*arithmos***is made up out of <<**

__Y__**>> which are**

*monads**"*<<

**-**__meta__**>>" of the <<**

*monads***>> of**

*monads***/ <<**

*ontological category***>>**

*arithmos***.**

__X__For example, if

__X__**=**

**, then --**

__atoms__**x**

__atoms__

__atoms__**=**

__atoms__**+**

**-**

__meta__

__atoms__**=**

__atoms__**+**

**-**

__delta__

__atoms__**=**

__atoms__**+**

__molecules__-- or --

**x**

__a__

__a__**=**

__a__**+**

**-**

__meta__

__a__**=**

__a__**+**

**-**

__delta__

__a__**=**

__a__**+**

__m__-- wherein each

**is a "**

__molecule__**-**

__meta__**", each one made up out of a [usually heterogenous] multiplicity of**

__atom__**, e.g. --**

__atoms__Water

__molecule__**/<<**

*unit***>> =**

*monad***H**

**2**

**O**

Carbon Dioxide

__molecule__**/<<**

*unit***>> =**

*monad***CO**

**2**

Methane

__molecule__**/<<**

*unit***>> =**

*monad***CH**

**4**

-- etc.

For another example, if

__X__**=**

__C__**, then --**

__ommodities__

__C__**x**

__ommodities__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

**-**

__meta__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

**-**

__delta__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

__M__

__onies__-- or --

**x**

__C__

__C__**=**

__C__**+**

**-**

__meta__

__C__**=**

__C__**+**

**-**

__delta__

__C__**=**

__C__**+**

__M__-- wherein each

**of**

*unit*

__M__**is a "**

__oney__**-**

__meta__**"**

__Commodity__**, each one**

*unit***made up out of a [usually heterogenous] multiplicity of**

*memetically*

__C__**, e.g., of the**

__ommodities__**"prices-list" in the expectation each human agent of the**

*mentalized***Mon**(

**ey**)(

**ies**)-for-

**Commodit**(

**y**)(

**) exchange <<**

*ies***>>, listing the number of**

*praxis***of each [**

*units*

__non__*-*

**money**]

**commodity**that will, by long-established convention, exchange for [

**<-->**] what specific

**of**

*number***of the**

*units*

*money**-*

**commodity**, e.g., for what specific number of

**of**

*units***gold**, constituting the

**gold**-"

**price**" of each such

**commodity**--

**20**yards of

**linen**

**<-->**

**2**ounces of

**gold**

**1**

**coat**

**<-->**

**2**ounces of

**gold**

**10**lbs. of

**tea**

**<-->**

**2**ounces of

**gold**

**40**lbs. of

**coffee**

**<-->**

**2**ounces of

**gold**

**1**qr. of

**corn**

**<-->**

**2**ounces of

**gold**

**1/2**ton of iron

**<-->**

**2**ounces of

**gold**

-- etc.

This "

**product**-

**rule**" for the "

**product**" of the

**of two ontological <<**

*interaction***>>/**

*arithmoi***-- or, in the "self-hybrid" case, for the**

*categories*

__self__*-*, or

**interaction***"*, within a single such <<

**intra**-**action**"**>>/**

*arithmos***-- is characterized as a**

*category**"*<<

**-**__double__**>>" "**

*aufheben***product**-

**rule**".

This is because the "operand", "argument", or "multiplicand" <<

**>> -- connoted by the**

*arithmos***ualifier that is right-most in the product expression, symbolizing the <<**

__q__**>> that is being acted upon by the**

*arithmos***ualifier, or <<**

__q__**>>-symbol, to its left, the "operator", "function", or "multiplier" -- is <<**

*arithmos***>>-**

*aufheben*

*conserved***per this "**

__twice__**product**-

**rule**".

It is <<

**>>-**

*aufheben***in the**

*conserved***first**instance, in the form of the

__un__changed "

**evolute**", "Boolean"

**, without any <<**

__simple__reproduction**>>-**

*aufheben***or <<**

*elevation***>>-**

*aufheben***, of that <<**

*transformation***>>'s symbol in the left-hand term of the product-expression's result-expression.**

*arithmos*It is <<

**>>-**

*aufheben***in the**

*conserved***second**instance, in the form of its

**itatively, ontologically**

__qual____changed__/

**, this time**

__expanded__reproduction**<<**

__with both__**>>-**

*aufheben***and <<**

*elevation***>>-**

*aufheben***as well, of that <<**

*transformation***>>'s symbol in the right-hand term of the product-expression's result-expression.**

*arithmos*For example --

__q__**/1**x

__q__**/n**

**=**

__q__**/**

**n**

**+**

__q__**/(**

**n**

**+**

**1)**

..........................................

**^**...............

**^**

...........................................

**|**................

**|**

..........................................

**1**st..........

**2**nd

-- or, in

**ral --**

*gene*

__q__**/j**x

__q__**/k**

**=**

__q__**/**

**k**

**+**

__q__**/(**

**k**

**+**

**j)**

........................................

**^**...............

**^**

.........................................

**|**................

**|**

.......................................

**1**st...........

**2**nd

-- and, in terms of "interpreted", or "assigned"

**ualifiers --**

__q__

__q__**/X**x

__q__**/X**

**=**

__q__**/**

**X**

**+**

__q__**/**

**XX**

**=**

__q__**/**

**X**

**+**

**-**

__delta__

__q__**/**

**X**

**=**

__q__**/**

**X**

**+**

__q__**/**

**Y**

............................................

**^**................

**^**

............................................

**|**.................

**|**

..........................................

**1**st............

**2**nd

-- which might tempt one to call this

**product rule**the

*"*<<

**"-**__triple__**>>**

*aufheben***evolute product rule**", except that the double-

**X**in

__q__**/**

**XX**

**here signifies the**

*"*<<

**meta**-**>>-**

*monad*

*ization**"*of the <<

**>> of**

*monads***to form the**

__X__*"*<<

**meta**-**>> which are the <<**

*monads***>> of**

*monads***.**

__Y__For examples --

**x**

__atoms__

__atoms__**=**

__atoms__**+**

**-**

__meta__

__atoms__**=**

__atoms__**+**

**-**

__delta__

__atoms__**=**

__atoms__**+**

__molecules____[__

**physically***made of***atoms**]-- which, in the three result-expressions, exhibits the

__double__*-*

**occurrence**of the operand / argument / multiplicand category,

**[here we have**

__atoms__**as also the operator / function / multiplier category, as this is a "squared", or "self-reflexive function", expression: an "operator/operand-identical" expression, a "function/argument-identical" expression, or a "multiplier/multiplicand-identical" expression, i.e., a "subject-[verb-]/object-identical" expression], and --**

__atoms__

__C__**x**

__ommodities__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

**-**

__meta__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

**-**

__delta__

__C__

__ommodities__**=**

__C__

__ommodities__**+**

__M__

__onies__

__[ memetically__*made of*

__C__

__ommodities__

__]__-- which, in the three result-expressions, exhibits the

__double__*-*

**occurrence**of the operand / argument / multiplicand category,

__C__**[here, again, we have**

__ommodities__

__C__**as also the operator / function / multiplier category, as this is a "squared", or "self-reflexive function", expression: an "operator/operand-identical" expression, a "function/argument-identical" expression, or a "multiplier/multiplicand-identical" expression, i.e., a**

__ommodities__"subject-[verb-]/object-identical" expression].

Regards,

Miguel

## No comments:

## Post a Comment